The Effect of Out-Of-Band Energy on the Measurement and Analysis of Pyroshock Data

Strether Smith Structural/Signal Analysis Consultants (S/SAC) (408)202-6821 strether.smith@gmail.com

80th Shock and Vibration Symposium San Diego, CA 28 October, 2009

What is Out-of-band Energy?

The best way to describe it is with an Example:

Suppose We Put an Accelerometer on the "Wing" of our Starfighter to Measure the Response to the Explosion

If We Acquired the Data at 1 Million Samples/Second The Response Might Be Something Like This 1000.0 800.0 600.0 400.0 Amplitude (Gs) 200.0 0.0 -200.0 -400.0 -600.0 -800.0 -1000.0-0.0020 0.0040 0.0060 0.0100 0.0120 0.0140 0.0164 0.0000 0.0080 Time (Seconds)

To See What's Really Going On We Calculate the Spectrum

We see that the Response Includes a Lot of High-Frequency Energy (And a lot of it is Wrong!)

And, We Don't Care About a Lot of the High-Frequency Energy Because it Does Not Cause Damage.

Lowering the Measurement Bandwidth

Out -of-Band Energy

Suppose (in our Infinite Wisdom) We Decide that We Only Care About Energy Below 5 KHz.

So What?

10000

Frequency (Hz.)

0.1

0.01-

500

1000

500000

100000

So What II?

Headroom

So, to cover this, we need a headroom of at least $\frac{1800}{470} = -4$ *To be Safe, We Should Use 10!*

What Happens When We Don't Do It Right?

- We are going to Use the Data Set Shown Earlier but Recognize that there are many instances of Test Data that have much higher High-Frequency Content.
- We are going to Emulate what would Happen if we Sample Too Slow and Don't Use a Low-Pass Filter!

Shock Aliasing Demo

A Closer Look at the Spectrum

Rule #1

- We must always either:
 - Sample So Fast that We Know that
 All Significant Frequency Components
 are Below the Nyquist Frequency (S/2)
 Dangerous
 - Filter and Sample with a Strategy that Assures that Our Data Set is Adequately Alias-Protected in the Frequency Range of Interest.
- Best Solution: Sample Really Fast with a Filter that Assures that We are Safe From Aliasing.
 - Available but Really Expensive

Problem #2---Slew Rate

Problem #2---Slew Rate ---Limiting Bandwidth

Problem #2---Slew Rate ---Out-of-Band Saturation

Problem #2---Slew Rate ---Out-of-Band <u>Slew</u> Saturation

Slew Saturation Causes an **Offset**

So...

- The Demo Shows That Saturation in Slew Is <u>One Possible Cause</u> of the Offsets We See in Shock Testing.
- Where Can Slew-Rate Limiting Occur?
- Here, and here, and here, and here....

18

So, In Principle

We Need to Know What the Slew Rate Capability of Each of the Components Is

And

We need to Have an Estimate of the Maximum Slew Rate We Can Expect From Our Tests.

The Worst of These Is the "Remelman" Set

If We "Normalize/Calibrate" the Data to a 5 Volt Maximum we get 12.5 Volts/uS (Is this the Real Worst?)

We need to Define a set of **Data-Acquisition-System Tests** that will Assure that the In-Band Energy is Well Represented and the **Out-of-Band Energy**

Does Not Interfere With the Measurement

A Proposed Validation Test Suite for Data Acquisition Systems used for Pyrotechnic Tests

Strether Smith Structural/Signal Analysis Consultants (S/SAC) (408)202-6821 strether.smith@gmail.com

80th Shock and Vibration Symposium San Diego, CA 28 October, 2009

What Are We Going to Do/Not Do

- Do:
 - Show that the System
 - Has an Understandable and "Useful" Transfer Function.
 - Has Adequate Protection against Aliasing.
 - Will not produce Strange Results When Subjected to Expected Out-of-Band Energy.
 - Has Adequate Dynamic Range to Assure that the In-Band Energy is Well Characterized in the Presence of Large Out-of-Band Energy.
- Not Do:
 - Calibrate the System to .01% (or even 10%).

What are we Testing?

Task #1

 Assure that the In-Band Signal is Properly Recorded

and that

 Near-in-Band Aliasing Energy is Adequately Rejected

In-Band Characterization and Alias-Protection Verification

- The Test:
 - Perform a Sine Sweep
 - Frequency: .01 x Sample Rate to the Sample Rate.
 - Amplitude: 90% of Full Scale

• Analysis

– Perform Amplitude Vs Frequency Characterization.

The In-Band Gain/Aliasing Analyzer

A More-Modern Sigma-Delta System

Out-of-Band Behavior Characterization

- There is Nothing New Here!
 1984 System Specification:
 - The system shall have the capability of handling input frequencies up to at least one megahertz at a level of at least 10 volts peak.
- They may not have known why, but they knew that high-frequency, high-level, (out-of-band) signals caused

Data Corruption.

- Many Systems Built in the 1980's Could Meet the Spec.
- Many Systems Built in the 2000's Can't.

Scary!!

Out-of-Band Behavior Analysis

- •The Test:
 - Perform a Sine Sweep
 - Frequency: .1 x Sample Rate to 2 MHz.
 - Amplitude: 90% of Full Scale

Out-of-Band Behavior Analysis--II

Out-of-Band Behavior Analysis--III

Calculate Problem Slew Rate = $2 \times \Pi \times A(pk \vee) \times Problem Frequency$ = $2 \times \Pi \times 9 \times 383,877 = 21.7 V/uS$

Assess the Results

In the Previous Paper we saw that the "Real Experiment" Worst Case (so far) Voltage Slew Rate is the "Remelman" Set

Where we saw a Maximum of 12.5 Volts/uS

This leads us to the Conclusion that the Tested System is OK.

...on the (perhaps rash) assumption that the Remelman data is a worst case.

Dynamic Range Determination

In the Previous Paper we saw that the Energy that we are Interested In (in=band) is a Small Fraction of the **Total**.

Dynamic Range Requirement

This Result Indicates that a

Measurement Headroom of 10 is Required.

Accelerometer and Input Amplifier Range=5KG

1% Accuracy Minimum Dynamic Range = 1000/1 = 60dB

Desired Dynamic Range=10000/1 = 80dB

The Recommended Test.. "Effective Bits"

 Objective: Characterize the Time-Domain Accuracy of a Digital measurement System.

–Using a Signal that:

- Exercises the Full Range of the System
- Is "Dynamic" (Changing Rapidly).
- Analyze the Recorded Signal in a Way That:
 - -Determines Individual-Point Accuracy (*Worst Case*)
 - Determines RMS Accuracy ("Average" Error)

Effective Bits.. The Basic Idea **10-100 Cycles Ultra-Low** 3.0-Data 2.0 **Distortion** 1.0 -Acquisition 0.0 Sine -1.0-**System Oscillator** -2.11-3.0-0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.01000.0 Variables: F~Sample Rate/100 **Sample Rate** Amplitude=.95×Full Scale Gain "Error" **Least-Square Curve Fit** $y=a + b \times sin(cx + d)$ Amplitude 17

The Effective Bits Analyzer

Some Effective Bits Results

Requirements!!!!!

Bandwidth	30KHz ¹
In-Band Gain (Flatness)	< <u>+</u> 1% = ~ <u>+</u> .1dB ²
Minimum Alias Rejection	>1000/1 = 60dB
Minimum Error-Free Slew Rate	15V/uS
"Effective Bits" RMS Dynamic Range (<u>Time Domain</u>)	80dB

- ¹ 3 x Max SRS Analysis Frequency
- ² May be corrected in Post Processing