

S5-R2000D40

S5 Shock Sensor

\$4,000.00

Aluminum 7075

Piezoresistive Accelerometer: ± 2,000g Digital Capacitive Accelerometer: ± 40g

Battery: 850 mAh Storage: 8 GB

S5-R2000D40

The S5-R2000D40 is a shock recorder with a high performance piezoresistive accelerometer, a secondary capacitive accelerometer and other environmental sensors. This model, with its wide measurement range of 2,000g is very popular for shock testing. Its aluminum enclosure improves reliability in harsh environments and widens its frequency response. The S5 offers a larger battery to allow for the longest recording times of our sensors.

<u>Demo with an Engineer</u> <u>Visit our Help Center</u> <u>Contact Customer Success</u>

Product Features

• Standalone measurement system with sensors, storage & rechargeable battery

Convenient

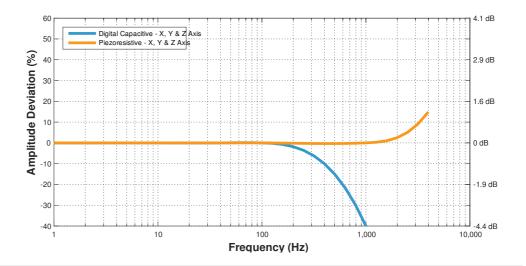
- Handheld form factor
- Setup in minutes over USB interface

• Multiple accelerometers for dynamic range

Adaptable

- Many additional embedded sensors into single system
- User-programmable wake-up conditions and sample rates
- Trusted in harsh environments by over 2,000 customers & the US Navy

Reliable


- Calibrated with NIST Traceable Accelerometer
- Storage capacity for billions of data points

Accelerometer Specifications

Accelerometer Type	Range	Sampling Rate	Bandwidth	Noise	Resolution
Piezoresistive	± 2,000g	20,000 Hz	0 to 2,000 Hz	< 1.6 gRMS	0.06 g
Digital Capacitive	± 40g	4,000 Hz	0 to 300 Hz	< 0.01 gRMS	0.00008 g

Frequency Response Plot

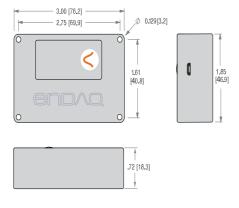
Additional Sensor Specifications

Sensor	Measurement Range	Resolution	Sampling Rate
Gyroscope	2000°/s	0.06 °/s	0 (off) to 200 Hz
Magnetometer	± 1300 μT	0.3 μΤ	0 (off) to 10 Hz
Temperature	-40 to 85 °C	0.01 °C	0 (off) to 10 Hz
Pressure	1 to 200 kPa	1.6 Pa	0 (off) to 10 Hz
Humidity	0 to 100 %RH	0.04% RH	0 (off) to 10 Hz
Light	0 to > 20 uV	<100 mlx	0 (off) to 4 Hz

Environmental Specifications

Parameter	Range	Notes
Operating Temperature	-10°C to 80°C (14°F to 176°F)	
Recommended Storage Temperature	15°C to 30°C (59°F to 86°F)	Recharging Temperature 0°C to 45°C (32°F to 113°F)
Humidity	0 to 95 %RH	Non-Condensing
Pressure	20 kPa to 110 kPa (2.9 psi to 16.0 psi)	Absolute Pressure
Shock Limit	>3,000 g	Refer to Shock Report (PDF)
No Electric Field Susceptibility	2 MHz to 18 GHz @ 200 V/m	Refer to EMI Test Report (PDF)
No Magnetic Field Susceptibility	30 Hz to 100 kHz	Refer to EMI Test Report (PDF)

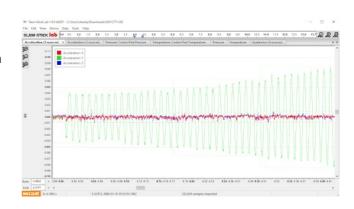
Battery & Storage Performance


Battery performance is heavily dependent upon the device configuration (sensor sample rates and triggers), battery age (including charging cycles), and temperature. The following table provides the battery life and storage capacity

of this device assuming it has a relatively new battery and it is at room temperature. When showing performance it assumes all sensors are on at the default sample rate with the main accelerometer sample rate driving performance. With triggers, it assumes the device is in trigger mode 99% of the time. Here are some additional resources: Measurement Settings, Battery Specifications, Battery Life Estimator Tool.

Sample Rate	Storage Capacity	Continuous Recording	Main Accel. Trigger	2nd Accel. Trigger	Periodic/Time Trigger
100 Hz	22 days	37 hours	44 hours	7 days	153 days
1,000 Hz	9 days	37 hours	44 hours	7 days	146 days
5,000 Hz	3 days	30 hours	44 hours	7 days	129 days
20,000 Hz	17 hours	17 hours	44 hours	7 days	68 days

Dimensions



Mechanical Specifications

Mass	100 grams
Case Material	Aluminum 7075
Mounting - Screw	4-40 Bolts (100 in-oz)
Mounting - Tape (Double Sided)	3M 950 Tape
Length	76.2 mm (3.00")
Width	47.0 mm (1.85")
Thickness	18.3 mm (0.72")
Ingress Protection	IP 50 (Dust Protected)

Free Software Features

- Free Standalone Software Packages <u>Lab</u> Configuration, Quick Snapshot, Batch File Conversion <u>Analyzer</u> Analysis of enDAQ Sensor Data in MATLAB
- Configure Sensors for Measurement
- Export/Convert Data to CSV or MATLAB
- Analysis FFT PSD Spectogram Digital Filtering

